Provable quantum state tomography via non-convex methods
نویسندگان
چکیده
With nowadays steadily growing quantum processors, it is required to develop new quantum tomography tools that are tailored for high-dimensional systems. In this work, we describe such a numerical tool, based on recent ideas form non-convex optimization. The algorithm excels in the compressed-sensing-like situation, where only few data points are measured from a low-rank or highly-pure quantum state of a high-dimensional system. We show that the algorithm can practically be used in quantum tomography problems that are beyond the reach of convex solvers, and, moreover, is faster than other state-of-the-art non-convex solvers. Crucially, we prove that, despite being a non-convex program, under mild conditions, the algorithm is guaranteed to converge to the global minimum of the problem; thus, it constitutes a provable quantum state tomography protocol.
منابع مشابه
Provable non-convex projected gradient descent for a class of constrained matrix optimization problems
We consider the minimization of convex loss functions over the set of positive semi-definite(PSD) matrices, that are also norm-constrained. Such criteria appear in quantum state tomographyand phase retrieval applications, among others. However, without careful design, existing methodsquickly run into time and memory bottlenecks, as problem dimensions increase.However, the ma...
متن کاملFinite quantum tomography via semidefinite programming
Using the the convex semidefinite programming method and superoperator formalism we obtain the finite quantum tomography of some mixed quantum states such as: qudit tomography, N-qubit tomography, phase tomography and coherent spin state tomography, where that obtained results are in agreement with those of References [21, 24, 25, 4, 26].
متن کاملQuantum state tomography via compressed sensing.
We establish methods for quantum state tomography based on compressed sensing. These methods are specialized for quantum states that are fairly pure, and they offer a significant performance improvement on large quantum systems. In particular, they are able to reconstruct an unknown density matrix of dimension d and rank r using O(rdlog²d) measurement settings, compared to standard methods that...
متن کاملProvable Efficient Online Matrix Completion via Non-convex Stochastic Gradient Descent
Matrix completion, where we wish to recover a low rank matrix by observing a few entries from it, is a widely studied problem in both theory and practice with wide applications. Most of the provable algorithms so far on this problem have been restricted to the offline setting where they provide an estimate of the unknown matrix using all observations simultaneously. However, in many application...
متن کاملRobust calibration of a universal single-qubit gate set via robust phase estimation
Robust calibration of a universal single-qubit gate set via robust phase estimation. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. An important step in building ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.02524 شماره
صفحات -
تاریخ انتشار 2017